skip to main content


Search for: All records

Creators/Authors contains: "Üngör, Ö."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Fe(II) coordination complexes with ligands of an intermediate field strength often show witching between the high-spin (HS) and low-spin (LS) electronic configurations, known as spin crossover (SCO). This spin-state conversion is achieved by changes in temperature, pressure, or photoexcitation, which make SCO complexes promising materials for various applications that rely on bistable systems. Multifunctional materials that exhibit both spin-state switching and conductivity can be created by combining Fe(II) SCO complexes with organic TCNQ-type electron acceptors. In such complexes, TCNQ●d– radical anions are typically arranged in layers of one-dimensional stacks that provide conducting pathways (Fig. 1). The stacking distance can be affected by structural changes induced by the alteration in the electronic configuration and, thus, bond lengths at the Fe(II) center, resulting in synergy between SCO and conductivity. The synthesis of such materials can be approached in two ways: (1) by coordinating TCNQ●d– ligands directly to the Fe(II) center, which is partially protected by blocking ligands that limit the growth of extended structures or (2) by co-crystallizing completely blocked Fe(II) centers with free TCNQ●d– radicals. We will discuss several examples of the second approach, in which homoleptic Fe(II) cationic SCO complexes with tridentate 2,6-bispyrazolyl-pyridine (bpp) type ligands have been co-crystallized with fractionally-charged TCNQ●d– radical anions. The temperature- and solvent-dependent magnetic behavior and transport properties of these materials will be discussed. We will also present new pathways to improve the design of such molecule-based conductors with spin-state switching properties. To the best of out knowledge, we report the first examples of Fe(II) based conducting molecular materials with abrupt temperature-driven spin transitions. 
    more » « less